
Data ingestion and output
(reading and writing data)

Outline

• ASCII input files

• Binary input files

• CDMS-compatibility (is the solution to all
your I/O problems!)

• Writing data to output files

Some grounding

• Python itself, especially via the string module, makes
it really easy to manipulate string, and therefore
ingest ASCII data.

• The struct module, coupled with the Numeric
package allows for some ingestion of strictly binary
files.

• BUT, the biggest strength of CDAT is the addition of
the cdms module, which allows the user to really
easily ingest self-describing binary files such as the
ones in the NetCDF format.

Reading text files in Python

• In its simplest form python provides useful tools to
read ASCII data via string manipulation:
f=open(‘file.txt’)
lines=f.readlines()
for ln in lines:

sp=ln.split()
print ln, “splits to:”, sp

------------ Example outputs from above ---------------
“o3, 0.3462, 0.5834” splits to: [“o3”, “0.3462”, “0.5834”]
“no2, 2.4435, 3.4352” splits to: [“no2”, “2.4435”, “3.4352 ”]

ASCII files via contrib package: asciidata

• The contributed asciidata module provides some
simple ASCII file reading functions.

• Imagine a file containing tab_delimited data:
var1 var2
22 44.3
34 48.3

>>> import asciidata
>>> a=asciidata.tab_delimited('tab_del_data.txt')

>>> print a
{'var1': array([22., 34.]), 'var2': array([44.3,

48.3])}

ASCII files via CDAT: using VCDAT’s browser module (1)

• The ASCII file reading capabilities of VCDAT can be
accessed from the command line via the “browser”
module.

• For non- formatted data:
browser.gui_ascii.read(text_file ,header=0,

ids=None, shape=None, next='------
',separators=[';',',',':'])

• header: number of lines to skip at the
beginning of the file

• ids: Name(s) to assign to the variables
returned

• shape: Shape(s) to give to each variable read
• next: string separator between each variable
• separators: string separating elements

ASCII files via CDAT: using VCDAT’s browser module (2)

• For data in columns:
browser.gui_ascii_cols.read(text_file ,header=0,

cskip=0, cskip_type='columns', axis=0, ids=None,
idrow=0, separators=[';',',', ':'])

• cskip: number of column/character to skip
• cskip_type: what to skip column or character
• axis: 0/1 is the first column to be used as an

axis for the 1D variables
• idrow: 0/1 use the first row to set variable

ids
• ids: name to give to variables returned

ASCII files via contributed package: Scientific (1)

You can read ASCII “Fortran Formatted” files
using the Scientific contributed package:

>>> f = open(ascii_filename, 'r')
Import the module that does the work.

>>> from Scientific.IO import FortranFormat
Declare the fortran formats used to create the
data.

>>> ff1 = FortranFormat.FortranFormat('2i6')
>>> ff2 = FortranFormat.FortranFormat('12i6')

ASCII files via contributed package: Scientific (2)

>>> data_line = f.readline()
>>> mon, yr = FortranFormat.FortranLine(data_line,

ff1)# Now define an array to read the data into.
>>> import Numeric
>>> T_array = Numeric.zeros((14,))# In the next line

you are assigning the values.
>>> T_array[start_index: end_index] =

FortranFormat.FortranLine(f.readline(), ff2)
Note: You must have previously defined T_array.
See tutorial examples for more details.

Reading Binary files

• Fortran code also produce “pure” binary file, for this
the struct module can be really useful

• See http://docs.python.org/lib/module-struct.html for
more details.

• Alternatively you can use the function from VCDAT
inside the “browser” module:

browser.gui_read_Struct.read(file
,format="", endian='@', datatype='f',
ids=[], shape=[], separator=""):

http://docs.python.org/lib/module-struct.html

Reading Binary files

• Or you can use the contributed ‘binaryio’
package:

from binaryio import *
iunit = bincreate('filename')
binwrite(iunit, some_array) # (up to 4 dimensions,

or scalars)
binclose(iunit)
iunit = binopen('filename')
y = binread(iunit, n, ...) # (1-4 dimensions)
binclose(iunit)

Self-Describing Binary Files (1)

But the best way to read data in CDAT is to use the
cdms module. Recognised formats are:

– NetCDF (standard for input and output) – CDMS
follows the Climate and Forecasts (CF) Metadata
Convention for NetCDF.

– HDF4 – currently incompatible with the NetCDF
option due to library conflicts. CDAT can be built
with either, not both. There is a hope ahead with a
merger planned of NetCDF4 and HDF5 libraries
(http://my.unidata.ucar.edu/content/software/netcd
f/netcdf-4/index.html).

http://my.unidata.ucar.edu/content/software/netcdf/netcdf-4/index.html
http://my.unidata.ucar.edu/content/software/netcdf/netcdf-4/index.html
http://my.unidata.ucar.edu/content/software/netcdf/netcdf-4/index.html

Self-Describing Binary Files (2)

• More recognised format are:

– GRIB – is handled via the GrADS/GRIB interface,
a slightly convoluted but effective way to get data
into CDAT.

– PCMDI DRS format – not covered here as
relatively little UK usage.

– CDML (Climate Data Markup Language) – the
internal CDAT XML representation that points to
multiple binary files.

dset ^test.grb
index ^test.grb.idx
undef 9.999E+20
title test.grb
* produced by grib2ctl v0.9.12.5p32l
dtype grib 255
options yrev
ydef 181 linear -90.000000 1
xdef 360 linear 0.000000 1.000000
tdef 1 linear 18Z01jan1996 6hr
zdef 21 levels
21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
vars 1
O3hbl 60 203,109,0 ** Ozone mass mixing ratio kg kg**-1

Reading GRIB 1

To read GRIB (regular grids only), use the “grib2ctl.pl”
perl script to generate the control file (“.ctl”).

Example
Control

(*.ctl) file
[produced by
grib2ctl.pl]

grib2ctl.pl is available at:
http://www.cpc.ncep.noaa.gov/products/wesley/grib2ctl.html

http://www.cpc.ncep.noaa.gov/products/wesley/grib2ctl.html

The ‘gribmap’ utility (part of GrADS) is used to create
a small index file that points to the correct sections of
the GRIB file to access the actual data.
Typical usage:
$ grib2ctl.pl afile.grb > afile.ctl
$ gribmap –e –i afile.ctl
Open via the “afile.ctl” file.

Reading GRIB 2

gribmap is available as part of GrADS at:

http://grads.iges.org/grads/

http://grads.iges.org/grads/

Other self-describing formats of interest in the UK

• You can also get support for:

– PP-format – the BADC has developed code for reading the
Met Office proprietary field data format. This should soon be
included in the I/O layer beneath CDMS (known as cdunif –
a C-layer that provides read access to multiple formats, and
write access to NetCDF). Ask for details.

– NASA Ames – a group of ASCII formats developed at NASA
for field experiments and data exchange. Used extensively in
UK atmospheric research. The BADC has developed a
NASA Ames I/O Python package that links to cdms (see:
http://home.badc.rl.ac.uk/astephens/software/nappy).

http://home.badc.rl.ac.uk/astephens/software/nappy

CDMS (The heart of CDAT!)

CDMS is the python package at the core of CDAT.
You’ll spend hours of your life typing “import cdms”
when manipulating variables, files and datasets. It
provides the best way to read and write data:

• Opening a file for reading:
f=cdms.open(file_name)
– will open an existing file protected against writing

• Opening a new file for writing:
f=cdms.open(file_name,’w’)
– will create a new file even if it already exists

• Opening an existing file for writing:
f=cdms.open(file_name,’r+’) # or ‘a’
– will open an existing file ready for writing or reading

Basic (NetCDF) File I/O example

• File I/O to NetCDF is simple and dealt
with at the object level:
import cdms
ufile = cdms.open(‘u-wind.nc’)

vfile = cdms.open(‘v-wind.nc’)

(u, v) = (ufile(‘u’), vfile(‘v’))

wind_speed = (u**2 + v**2)**0.5

outfile = cdms.open(‘wspd.nc’, ’w’)

outfile.write(wind_speed)

outfile.close()

cdms.open function binds
ufile to an instance of
CdmsFile

u and v are instances of
the FileVariable class.

wind_speed is a new
TransientVariable instance

outfile is another
CdmsFile instance with
write permission

Pulling data from a CDMS file object

• Multiple way to retrieve data
– All of it, omitted dimensions are retrieved entirely

s=f(‘var’)

– Specifying dimension type and values
s=f(‘lnsp’, time=(time1,time2))
Known types: time, level, latitude, longitude
(t,z,y,x) # lat=latitude, lon=longitude.

– Dimension names and values
s=f(‘temp’,<dimname1>=(val1,val2)) # <dimname>
is ‘time’, ‘level’, ‘latitude’ or ‘longitude’.

– Sometimes indices are more useful than actual values
s=f(‘tco3’,time=slice(index1,index2,step))

Axis selection: Time Dimension

The Time dimension provides a special case where you
want to specify more than values in the array:

• Raw values are not necessarily meaningful without a
reference time.

• 2 Solutions:
– Use strings as “value”

s=f(var,time=(‘2004’,’2004-4-29 10:30’))

– Use cdtime object:
t1=cdtime.comptime(2004)
t2=cdtime.comptime(2004,4,29,10,30)
s=f(var,time=(t1,t2))

The Mysterious 3rd argument
OK, we understood s=f(‘var’,time=(t1,t2)), but there is actually a

third argument defaulted to ‘ccn’. What is it? (i.e. (t1, t2, ‘ccn’)):

– The first 2 letters represents the bounds of the retrieved segment
they can be “c” or “o” as in “Closed” or “Opened”:

» ‘cc’ : [v1,v2]
» ‘co’ : [v1,v2[
» ‘oo’ :]v1, v2[

– The third letter represents the search method, it can be ‘b’, ’n’, ‘e’
or ‘s’ as in ‘Bounds’,’Node’, ‘Extranode’ or ‘Select’

– i.e the cell will be considered valid if the
bounds or node are within the interval
defined In the example figure:

(v1,v2,’ccb’) selects
(v1,v2,’ccn’) does not select

• ‘e’: same as n but add an extra node
• ‘s’: select axis elements for which the cell

boundary is a subset of the interval

cdms.open() – other options

The cdms.open() call also allows other known keywords
for data ingestion:

cdms.open() – other options

Writing data to files

• NetCDF – the standard format for geospatial
datasets.

• Creating and writing a CDMS variable.
• Writing variables and attributes to a CDMS

file.
• Writing non-standard binary files.
• Writing ASCII files.

NetCDF – the standard data format for climate data

• The standard CDAT output format is NetCDF
(compliant with the CF-Metadata Convention)

• Some selling points for choosing NetCDF:
– NetCDF is used extensively in the atmospheric and oceanic

science communities.
– NetCDF is a portable self-describing binary data format.
– NetCDF is network-transparent, meaning that it can be

accessed by computers that store integers, characters and
floating-point numbers in different ways.

– NetCDF provides direct-access: a small subset of a large
dataset may be accessed efficiently, without first reading
through all the preceding data.

– NetCDF is appendable: data can be appended to a NetCDF
dataset along one dimension without copying the dataset or
redefining its structure.

NetCDF – more good stuff!
– NetCDF datasets can be read and written in a number of

languages, these include C, C++, FORTRAN, IDL, Python, Perl,
and Java.

– The different language implementations are freely available
from the UNIDATA ftp area or from other mirror sites.

– Several graphics packages support NetCDF input, making it
very easy to display and analyse NetCDF datasets. For
instance FERRET and CDAT provide both command line and
graphical user interfaces for displaying and analysing gridded
data.

– NetCDF is completely and methodically documented in
UNIDATA's NetCDF User's Guide.

– Several groups have defined conventions for NetCDF files, to
enable the exchange of data. CDAT has adopted the Climate
and Forecasting (CF) conventions for NetCDF data.

• Tell me where to get more information!
http://my.unidata.ucar.edu/content/software/netcdf/index.html

http://my.unidata.ucar.edu/content/software/netcdf/index.html

NetCDF – a look inside (1)

• NetCDF tools make it so easy (even on Windows!):

$ ncdump [-h] simple.nc # and out comes an
ASCII listing of the file contents…

NetCDF – a look inside (2)

Is this relevant?

Yes, because CDAT uses a
NetCDF-like structure
internally!

Creating a CDMS variable to write to a file

To create a variable from scratch…
• Create a very simple Numeric array:

import cdms, Numeric

data_array=Numeric.array([23, 56, 189, 23.4], ‘f’)

• Create a latitude axis:
latax=cdms.createAxis([20., 30., 40., 50.])
latax.designateLatitude()

latax.units=“degrees_north”

• Create a CDMS Transient variable:
myvar=cdms.createVariable(data_array, axes=[latax],

attributes={“long_name”:”temperature”,
“units”:”K”})

You now have a variable that can be written straight to
a CDMS file!

Opening a file for writing

• Opening files with CDMS is simple, the second
argument dictates what type of access the user has:
– ‘r’ = read only (default if no second argument provided),

existing files only.
– ‘w’ = write only, creates a new file or overwrites existing.
– ‘r+’ or ‘a’ = read-write. ‘a’ opens a file if it exists or creates

one otherwise.
• To write a new CDMS file:

outfile=cdms.open(‘myfile.nc’, ‘w’)
and to close:
outfile.close()

• Same grammar as the built-in open function! This can
be a reason to not import everything from CDMS
because “ from cdms import * ” will overload the
built-in ‘open’ function.

Writing file variables and attributes

• Writing CDMS variables, Numeric arrays or Masked
Arrays to a CDMS file object is very easy:

outfile.write(myvar)
outfile.write(another_variable)

• Writing file attributes (file level metadata)
corresponds to setting global attributes in a NetCDF
file and is simply done by setting class attributes:

outfile.source=“Data from the centre of the
Galaxy”

outfile.sauce=“Ketchup”
outfile.version=“3.1”

Writing non-standard binary files

• Once again you can use the python struct module to
write more complex binary output files. For simple
binary arrays written to files you can use the built-in
python I/O:
>>> outfile=open(“binary_var.dat”, “wb”)

>>> x=N.array([2,4,6,8,9], 'f')
>>> outfile.write(x)
>>> outfile.close()

• If you have a multi-dimensional variable then you
might need to grab each row and write them
according to your own file format design.

• But why not use NetCDF?

Writing ASCII files

• Writing ASCII files is largely about your preferences as a file
author:
– Do you want any metadata retained?
– Do you want to follow any standards or make up your own brand?
– How do you want the data (and/or metadata) formatted?

• The simple view is to open an ASCII file and write to it:
>>> outfile=open(‘my_output.txt’, ‘w’)
>>> outfile.write(“Header: CHORDEX34 flight data\n”)
>>> outfile.write(“Time\tTemp (K)\tWspd (m/s)\n”)
>>> times=temp.getTime().asComponentTime()
>>> c=0
>>> while c<len(times):
... outstring=“%s\t%s\t%s\n” % (times[c],

temp[c], wspd[c])
... outfile.write(outstring)
... c=c+1
>>> outfile.close()

Writing ASCII files in NASA Ames format (1)

• The BADC has written a package to bridge the gap between the
NASA Ames File format(s) developed in the 1990s for data
exchange in scientific projects.

• nappy – NASA Ames Processing in Python – allows you to
write CDMS variables directly to NASA Ames (some sub-
formats will choke, but most will work!).

• Get nappy (beta-release) at:

http://home.badc.rl.ac.uk/astephens/software/nappy
• Command-line usage:

$ cdms2na.py –i cdmsFile.nc –o naFile.na

http://home.badc.rl.ac.uk/astephens/software/nappy

Writing ASCII files in NASA Ames format (2)

Working with nappy and CDMS:

>>> import nappy,cdms # import modules
>>> cdmsFile=cdms.open(‘mydatafile.nc’) # open file

>>> cdmsVar=cdmsFile(‘n2o5’) # get variable
>>> naBuilder=nappy.CdmsToNABuilder(cmdsVars)

create the NASA Ames builder class

>>> nappy.openNAFile(“my_file.na”, “w”,
naBuilder.naDict) # write output NASA Ames

file using builder instance.

	Data ingestion and output (reading and writing data)
	Outline
	Some grounding
	Reading text files in Python
	ASCII files via contrib package: asciidata
	ASCII files via CDAT: using VCDAT’s browser module (1)
	ASCII files via CDAT: using VCDAT’s browser module (2)
	ASCII files via contributed package: Scientific (1)
	ASCII files via contributed package: Scientific (2)
	Reading Binary files
	Reading Binary files
	Self-Describing Binary Files (1)
	Self-Describing Binary Files (2)
	Reading GRIB 1
	Other self-describing formats of interest in the UK
	CDMS (The heart of CDAT!)
	Basic (NetCDF) File I/O example
	Pulling data from a CDMS file object
	Axis selection: Time Dimension
	The Mysterious 3rd argument
	cdms.open() – other options
	cdms.open() – other options
	Writing data to files
	NetCDF – the standard data format for climate data
	NetCDF – more good stuff!
	NetCDF – a look inside (1)
	NetCDF – a look inside (2)
	Creating a CDMS variable to write to a file
	Opening a file for writing
	Writing file variables and attributes
	Writing non-standard binary files
	Writing ASCII files
	Writing ASCII files in NASA Ames format (1)
	Writing ASCII files in NASA Ames format (2)

